3.1339 \(\int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=346 \[ \frac {\left (a^2 (-C)+4 a b B+8 A b^2+4 b^2 C\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {(8 a A+3 a C+4 b B) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {(a C+4 b B) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{4 b d \sqrt {\cos (c+d x)}}-\frac {(a C+4 b B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {C \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{2 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

1/4*(8*A*a+4*B*b+3*C*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(
a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+1/4*(8*A*b^2+4*B*a*b-
C*a^2+4*C*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b
))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/b/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+1/2*C*sin(d*x+c)*(a+b*sec
(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)+1/4*(4*B*b+C*a)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/b/d/cos(d*x+c)^(1/2)-1/4*(
4*B*b+C*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2
))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/b/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.33, antiderivative size = 346, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 14, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.311, Rules used = {4265, 4096, 4102, 4108, 3859, 2807, 2805, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac {\left (a^2 (-C)+4 a b B+8 A b^2+4 b^2 C\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {(8 a A+3 a C+4 b B) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {(a C+4 b B) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{4 b d \sqrt {\cos (c+d x)}}-\frac {(a C+4 b B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {C \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{2 d \cos ^{\frac {3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

((8*a*A + 4*b*B + 3*a*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(4*d*Sqrt[C
os[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + ((8*A*b^2 + 4*a*b*B - a^2*C + 4*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/(a +
 b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(4*b*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - ((4*b*B
+ a*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*b*d*Sqrt[(b + a*C
os[c + d*x])/(a + b)]) + (C*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2*d*Cos[c + d*x]^(3/2)) + ((4*b*B + a*C)*S
qrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*b*d*Sqrt[Cos[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4096

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d
*Csc[e + f*x])^n)/(f*(m + n + 1)), x] + Dist[1/(m + n + 1), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^
n*Simp[a*A*(m + n + 1) + a*C*n + ((A*b + a*B)*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) + a*C
*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] &&
!LeQ[n, -1]

Rule 4102

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m
 + 1)*(d*Csc[e + f*x])^(n - 1))/(b*f*(m + n + 1)), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*
Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a*C
*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4108

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 4265

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\\ &=\frac {C \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{2} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (\frac {1}{2} a (4 A+C)+(2 A b+2 a B+b C) \sec (c+d x)+\frac {1}{2} (4 b B+a C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {C \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 b B+a C) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{4} a (4 b B+a C)+\frac {1}{2} a b (4 A+C) \sec (c+d x)+\frac {1}{4} \left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b}\\ &=\frac {C \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 b B+a C) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{4} a (4 b B+a C)+\frac {1}{2} a b (4 A+C) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b}+\frac {\left (\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 b}\\ &=\frac {C \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 b B+a C) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {\left ((-4 b B-a C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{8 b}+\frac {1}{8} \left ((8 a A+4 b B+3 a C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\left (\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ &=\frac {C \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 b B+a C) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {\left ((8 a A+4 b B+3 a C) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left ((-4 b B-a C) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{8 b \sqrt {b+a \cos (c+d x)}}\\ &=\frac {\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {C \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 b B+a C) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {\left ((8 a A+4 b B+3 a C) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left ((-4 b B-a C) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{8 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}\\ &=\frac {(8 a A+4 b B+3 a C) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {(4 b B+a C) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{4 b d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {C \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 b B+a C) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 33.36, size = 100266, normalized size = 289.79 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

Result too large to show

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [C]  time = 2.42, size = 1579, normalized size = 4.56 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x)

[Out]

1/4/d*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^3*(-4*B*sin(d*x+c)*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b*(1/(1+cos(d*x+c
)))^(3/2)-C*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*sin(d*x+c)*(1/(1+cos(d*x+c)))^(3/2)-2*C*cos(d*x+c)^2*((a-b)/(
a+b))^(1/2)*a*b*sin(d*x+c)*(1/(1+cos(d*x+c)))^(3/2)-4*B*sin(d*x+c)*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^2*(1/(1+co
s(d*x+c)))^(3/2)-3*C*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b*sin(d*x+c)*(1/(1+cos(d*x+c)))^(3/2)-2*C*cos(d*x+c)*sin
(d*x+c)*((a-b)/(a+b))^(1/2)*b^2*(1/(1+cos(d*x+c)))^(3/2)-2*C*sin(d*x+c)*((a-b)/(a+b))^(1/2)*b^2*(1/(1+cos(d*x+
c)))^(3/2)+8*A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c)
)/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)^2*a*b-8*A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-
(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)^2*b^2+16*A*((b+a*cos(d*x+c))/(1+c
os(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^
(1/2))*cos(d*x+c)^2*b^2-4*B*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)^2*a*b+4*B*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/
sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)^2*b^2+8*B*((b+a*cos(
d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((
a-b)/(a+b))^(1/2))*cos(d*x+c)^2*a*b-C*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^
(1/2))*cos(d*x+c)^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2+C*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*a*b+2*C*El
lipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*((b+a*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*a^2+2*C*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2
))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)^2*a*b-4*C*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^
(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b^2-2*C*Elli
pticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)^2*((b+a*co
s(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2+8*C*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/
(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b^2)*((b+a*cos(d*x+c))
/cos(d*x+c))^(1/2)/b/((a-b)/(a+b))^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)^6/(1/(1+cos(d*x+c)))^(3/2)/cos(d*x+c)^(3/
2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/cos(c + d*x)^(1/2),x)

[Out]

int(((a + b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/cos(c + d*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a + b \sec {\left (c + d x \right )}} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________